Identify if the Table is Linear.

X	-1	0	1	2	3
Y	10	8	6	4	2

The easiest way to determine of a table is linear is to find an adding or subtracting pattern. Since the x values always add one and the y values always subtract 2 this table is linear.

X	2	4	6	8	10
Y	3	4	7	8	9

The x values always add 2 each time, but the y values do not always add one so the table is not linear.

X	-1	3	4	5	7	8
Y	-3	5	7	9	13	15

Since the x values do not have a pattern we could compare the slope of each pair of coordinates, however until we learn slope the alternate way to tell it is linear would be to plot the (x, y) points on a graph. If the graph is a straight line, it is linear.

